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Abstract. The eigenvalue of the transfer matrices for the boundary invariant Thirring model
and Bethe ansatz equation satisfied by quasimomenta are obtained by the analytical Bethe ansatz
approach.

1. Introduction

One of the most important nonlinear integrable models in one spatial and one time dimension
is the SU(2)-invariant Thirring model (ITM), with the Lagrangian [1, 2]

L =
∫

dx [iψ̄γµ∂µψ − g(ψ̄σ aγµψ)(ψ̄σ aγµψ)] (1)

where ψ = {ψα
i } is the doublet Fermi field (where i = 1, 2 is the spinor index and α = 1, 2

the isotopic index), Pauli matrices σa are the isotropic matrices acting on the isotopic indices,
γµ are the Dirac matrices: γ0 = σx, γ1 = iσy, γ5 = σ z. The model possesses the property
of asymptotic freedom. Mass is generated dynamically via the mechanism of dimensional
transmutation. Physical excitations are two-component massive particles (kinks). The kinks
are parametrized by their rapidities ui and isotopic ε = 1, 2. The S-matrix is given by

S12(u) =




u + 2c,
u, 2c,
2c, u,

u + 2c


 = u + 2cP12 (2)

here u = u1 − u2 is the difference of rapidities, c = − 1
2 iπ and P12 is the permutation matrix.

TheS-matrix (2) is factorizable, that is to say, it is a solution of the Yang–Baxter equation (YBE)
[3],

S12(u1 − u2)S13(u1 − u3)S23(u2 − u3) = S23(u2 − u3)S13(u1 − u3)S12(u1 − u2). (3)

For the massive theory in the bulk, this equation result in an infinite set of mutually commutative
integrals of motion. So the model may be solved exactly by the Bethe ansatz.

Since the work of Cherednik [4], much more interest was focused on the field theory with
integrable boundary. It is shown that, in the boundary case, besides the factorizable S-matrix,
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the reflection matrix K+ and its dual K−, which satisfy the reflection equation (RE) and the
dual RE

S12(u1 − u2)K
+
1 (u1)S21(u1 + u2)K

+
2 (u2) = K+

2 (u2)S12(u1 + u2)K
+
1 (u1)S21(u1 − u2)

S12(−u1 + u2)K
−
1 (u1)S21(−u1 − u2 − 4c)K−

2 (u2)

= K−
2 (u2)S12(−u1 − u2 − 4c)K−

1 (u1)S21(−u1 + u2) (4)

are necessary to ensure the integrability of the theory [5]. For the ITM with an integrable
boundary, a reflection matrix was given in [6],

K+(u) =
[

u + c + µ

−u + c + µ

]
(5)

K−(u) =
[ −u − c + ν

u + 3c + ν

]
(6)

where µ and ν are the right and left boundary parameters, respectively.
In integrable systems, an important role is played by a transfer matrix, which may be

considered as a generating function for a family of commuting Hamiltonians. The transfer
matrix can be constructed by monodromy matrix T (u), which reads

T (u) =
N∏
j=1

L(j, u)

L(j, u) =
[

(u + c) + cσ z
j , 2cσ−

j

2cσ +
j , (u + c) − cσ z

j

]
(7)

in the case of the bulk. Here σ 3
j and σ±

j = 1
2 (σ1 ± iσ2)j are isotopic operators acting on the

j th isotopic space. T (u) act on Va ⊗V ⊗N
i (Vi = C2) with Va denoting the auxiliary space and

V ⊗N
i the 2N -dimensional isotopic space. L(j, u) can be intertwined by the S-matrix,

S12(u − v)L1(j, u)L2(j, v) = L2(j, v)L1(j, u)S12(u − v) (8)

and having transpose symmetry,

Ltj (j, u) = QL(j,−u − 2c)Q (9)

where Q is a 2 × 2-matrix Q = −iσ2 = [ −1

1

]
. The special structure of S(K±)-matrices

and L operators completely determine the spectra of the transfer matrices. In this paper, the
eigenvalues of the transfer matrix for boundary ITM will be calculated by the analytical Bethe
ansatz proposed by Reshetikhin [7].

2. Transfer matrix

From (2), one knows that S12(u) = S21(u), S12(0) = 2cP12 and S12(±2c) = ±4cP±
12. Here,

P±
12 = 1

2 (1 ± P12) are projective operators. Besides YBE, the S-matrix (2) also satisfies the
unitarity relation and crossing symmetry,

S12(u)S21(−u) = (4c2 − u2)I12

S
t2
12(u) = S

t1
12(u) = Q1S12(−u − 2c)Q1

(10)
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where t1 and t2 denote the transposition with respect to the first and second spaces, respectively.
Q1 = Q ⊗ 1. The reflection matrices K±(u) also satisfy the unitarity relation,

K+(u)K+(−u) = (c + µ)2 − u2

K−(u − 2c)K−(−u − 2c) = (c + ν)2 − u2
(11)

and have the following crossing symmetry:

−2(u + 2c)Qj

i K
+(u)kj (u)Q

l
k = S

lj

ki(2u)K
+(−u − 2c)kj

2uQj

i K
−(u)kj (u)Q

l
k = S

lj

ki(−2u − 4c)K−(−u − 2c)kj .
(12)

A transfer matrix in the case of a boundary is defined by [5]

τa(u) = tra K
−(u)T (u)K+(u)T −1(−u)

= tra K
−(u)L(1, u) · · ·L(N, u)K+(u)L−1(N,−u) · · ·L−1(1,−u) (13)

where tra stands for the trace in the auxiliary space and L−1(j, u) are defined by

L−1(j, u) = L(j,−u). (14)

Utilizing the property of L and K (equations (8)–(10) and (12)), one can transpose τa(u) with
respect to isotopic space,

τ t
a(u) = tra K

+
a (u)L

−1,tN (N,−u) · · ·L1,t1(1,−u)K−
a (u)L

t1(1, u) · · ·LtN (N, u)

= tra QaK
+
a (u)QaL(N, u + 2c) · · ·L(1, u + 2c)

×QaK
−
a (u)QaL(1,−u − 2c) · · ·L(N,−u − 2c)

= tra K
−
a (−u − 2c)L(1,−u − 2c) · · ·L(N,−u − 2c)

×K+
a (−u − 2c)L−1(N, u + 2c) · · ·L−1(1, u + 2c)

= τa(−u − 2c). (15)

On the other hand, owing to (8), one has

P−
12L1(j, u)L2(j, u + 2c)P + = 0. (16)

This relation allows one to write the produce L1(u)L2(u+2c) as the following block-triangular
structure in the auxiliary space V1 ⊗ V2:

L1(u)L2(u + 2c) =
[

u(u + 4c)I3, 0
∗, (u + 2c)f〈12〉3(u)

]
(17)

where I3 is an identity operator in the one-dimensional antisymmetric auxiliary space and
f〈12〉3(u) is the symmetric fusion of the two S-matrices in the three-dimensional symmetric
auxiliary space.

In a similar way, from (4), it follows that

P−
12K

+
1 (u)S21(2u + 2c)K+

2 (u + 2c)P +
12 = 0

P−
12K

−
2 (u + 2c)S12(−2u − 6c)K−

1 (u)P +
12 = 0

(18)

and one can write

K+
1 (u)S21(2u + 2c)K+

2 (u + 2c)

=
[ −2u(u + 3c + µ)(u + c − µ), 0

∗, (u + 2c)K+
〈12〉(u)

]
(19)
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K−
2 (u + 2c)S12(−2u − 6c)K−

1 (u)

=
[

2(u + 4c)(u + c − ν)(u + 3c + ν), 0
∗, (u + 2c)K−

〈12〉(u)

]
. (20)

K±
〈12〉(u) are the symmetric fusion of K+(u) or K−(u), respectively. The block-triangular

forms in auxiliary space make it simple to calculate the product of two transfer matrices with
spectral parameters u and u + 2c, respectively,

τ(u)τ(u + 2c) = u2N+1(u + 4c)2N+1

(u + c)(u + 3c)
(u + c − µ)(u + 3c + µ)(u + c − ν)(u + 3c + ν)

− (u + 2c)2N+2

4(u + c)(u + 3c)
F (u) (21)

where F(u) is the transfer matrix for the symmetric fused model.

3. Eigenvalue of the transfer matrix

Let )(u) be the eigenvalue of the transfer matrices, from (15) and (21) one knows that they
must satisfy

)(u) = )(−u − 2c) (22)

)(u))(u + 2c) = u2N+1(u + 4c)2N+1

(u + c)(u + 3c)
(u + c − µ)(u + 3c + µ)(u + c − ν)(u + 3c + ν)

− (u + 2c)2N+2

4(u + c)(u + 3c)
f (u). (23)

Now we analyse the asymptotic behaviour of )(u) in the limit u → ∞. Denote L̂j (u) =
L(j, u) ⊗ L−1,ta (j,−u), then

τa(u) = tra K
−(u)il T̂

jk

il K+(u)kj

T̂ = L̂1 · · · L̂N .
(24)

Let y = u + c, one has

L̂j (u)
y→∞−→ y2 + 2cy(σ z

j τ1 + σ +
j τ2 + σ−

j τ3) + O(y0) (25)

where τi are three 4 × 4-matrices,

τ1 =




1
0

0
−1


 τ2 =




0 1 0 0
0 0 0 0
1 0 0 1
0 1 0 0


 τ3 =




0 0 1 0
1 0 0 1
0 0 0 0
0 0 1 0


.

(26)

With the help of (25), one can write

T̂ =
N∏
j=1

L̂(j, u)
y→∞−→ y2N + 2cy2N−1(N − M)τ1 + 2cy2N−1

×
( N∑

j=1

σ +
j τ2 +

N∑
j=1

σ−
j τ3

)
+ O(y2N−2) (27)
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where M = N − ∑N
i=1 σ

(i)
3 . From (24), it follows that M commute with the transfer matrix.

Let |m〉 be the simultaneous eigenstate of τ(u) and M , τ(u)|m〉 = )m(u)|m〉,M|m〉 = m|m〉.
From (24) and (27), the eigenvalue )m(u) in the limit of y → ∞ is obtained,

)m = K−(u)il T̂
jk

il K+(u)kj = a0A0[y2N + 2c(N − m)y2N−1 + O(y2N−2)]

×b0B0[y2N − 2c(N − m)y2N−1 + O(y2N−2)]. (28)

where

A0 = u + c + µ B0 = −u + c + µ

a0 = −u − c + ν b0 = u + 3c + ν. (29)

In particular, when m = 0, which correspond to all N isotopic spins in the up state,
|0〉 = ↑ ⊗ ↑ ⊗ · · · ⊗ ↑, one has

)0 = 〈0|τ(u)|0〉
= tra K

−
a (u)〈↑|L(1, u) · · · 〈↑|L(N, u)K+

a (u)L
−1(N,−u)|↑〉 · · ·L−1(1,−u)|↑〉. (30)

Note that K+
a (u) is a diagonal form, let us show that 〈 ↑|L(1, u) · · · 〈↑|L(N, u)K+

a (u)

L−1(N,−u)|↑〉 · · ·L−1(1,−u)|↑〉 is also a diagonal form. Suppose 〈 ↑|L(j, u) · · · 〈↑|L(N, u)

K+
a (u)L

−1(N,−u)|↑〉 · · ·L−1(j,−u)|↑〉 = ( AN−j+1

BN−j+1

)
, then

〈↑|L(j − 1, u) · · · 〈↑|L(N, u)K+
a (u)L

−1(N,−u)|↑〉 · · ·L−1(j − 1,−u)|↑〉

=
[

(u + 2c)〈↑| 0
2c〈↓ | u〈↑|

] [
AN−j+1 0

0 BN−j+1

] [
(u + 2c)|↑〉 2c| ↓〉

0 u|↑〉
]

=
[

AN−j+1(u + 2c)2 0
0 BN−j+1u

2 + AN−j+1(2c)2

]

=
[

AN−j+2 0
0 BN−j+2

]
. (31)

So we have the following successive relations:

AN−j+2 = (u + 2c)2AN−j+1

BN−j+2 = u2BN−j+1 + (2c)2AN−j+1. (32)

From these relations, we obtain

AN = (u + 2c)2NA0

BN = u2NB0 + (2c)2 u
2N − (u + 2c)2N

u2 − (u + 2c)2
A0.

(33)

So )0 reads as follows:

)0 = (u + 2c)2NA0

(
a0 +

c

u + c
b0

)
+ u2Nb0

(
B0 − c

u + c
A0

)
. (34)

The general form of )m(u) can be assumed as

)m = 〈m|τ(u)|m〉

= (u + 2c)2NA0

(
a0 +

c

u + c
b0

)
Q(u) + u2Nb0

(
B0 − c

u + c
A0

)
P(u). (35)
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From (22), one knows that Q(u) and P(u) must satisfy

Q̄(u) = P(−u − 2c) P̄ (u) = Q(−u − 2c) (36)

and from equation (23), it follows that

Q(u + 2c)P (u) = 1 Q(u)Q̄(−u) = 1 P(u − 2c)P̄ (−u − 2c) = 1. (37)

Owing to (37), Q(u) and P(u) are required to have the following asymptotic behaviour:

Q(u)
y→∞−→ 1 +

1

y
q + O(y−2)

P (u)
y→∞−→ 1 +

1

y
p(y) + O(y−2).

(38)

Compare (28) with (38), one has

q = −2cm p = 2cm. (39)

So Q(u) and P(u) may be written as

Q(y) =
m∏
i=1

y − 2c − αi

y − αi

or Q(u) =
m∏
i=1

u − c − αi

u + c − αi

P (u) = Q−1(u + 2c) =
m∏
i=1

u + 3c − αi

u + c − αi

.

(40)

The eigenvalues of the transfer matrices on the m-magnon eigenvector |m〉 are

)m = (u + 2c)2NA0(a0 +
c

u + c
b0)

m∏
i=1

u − c − αi

u + c − αi

+u2Nb0(B0 − c

u + c
A0)

m∏
i=1

u + 3c − αi

u + c − αi

. (41)

Equation (41) is required to be analyticity, that is to say, the residue of (41) at all poles should
vanish. This result in the Bethe ansatz equations

(
αi + c

αi − c

)2N+1

= (αi + 2c + ν)(αi − µ)

(αi − 2c − ν)(αi + µ)

m∏
j=1,�=i

αi − αj + 2c

αi − αj − 2c
. (42)

4. Discussion

In this paper, the approach of the analytical Bethe ansatz is applied to the boundary SU(2)-
invariant Thirring model, the eigenvalue of the transfer matrices and the Bethe ansatz equation
satisfied by the quasimomenta are obtained. This approach does not depend on whether
a special pseudovacuum exists, on which the L operators act as triangular matrices. It only
utilizes the structure of the scattering and reflection matrix. So it may be applied to more general
cases, such as a boundary sine–Gordon model, for which the construction of multiparticle
states is more complicated. The results for the boundary sine–Gordon model are expected to
be similar to those of the boundary ITM, because ITM may be considered as a limit of the
sine–Gordon model.
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